# Situación de IPv6 y Estrategias a Futuro

Francisco Bolaños

**SE Public Sector/ Education** 





#### **Porque IPv6?**

# IPv6 una necesidad?

- IETF IPv6 WG began in early 90s, to solve addressing growth issues, but
  - CIDR, NAT,...were developed

#### IPv4 32 bit address = 4 billion hosts

~40% of the IPv4 address space is still unused which is different from unallocated

The rising of Internet connected device and appliance will eventually deplete the IPv4 address space

#### • IP is everywhere

Data, voice, audio and video integration is a reality

**Regional registries apply a strict allocation control** 

So, only compelling reason: More IP addresses

#### IPv6 una necesidad?

#### Internet population

~600M users in Q4 2001, ~945M by end 2004—only 10–15% of the total population

How to address the future worldwide population? (~9B in 2050)

Emerging Internet countries need address space, e.g.,

China uses nearly two class A (11/2001), ~20 class A needed if every student (320M) has to get an IP address

 Mobile Internet introduces new generation of Internet devices

PDA (~20M in 2004), mobile phones (~1.5B in 2003), tablet PC

Enable through several technologies, e.g., 3G, 802.11, etc.

Consumer, home and industrial appliances

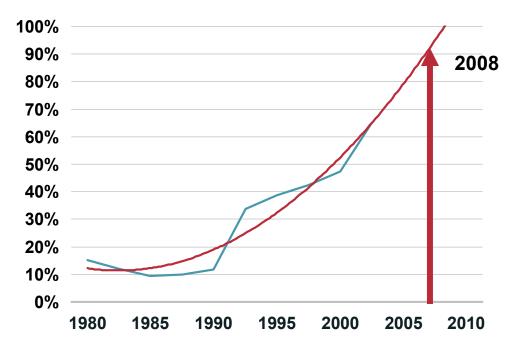
#### IPv6 una necesidad?

 Transportation—mobile networks

#### **1B automobiles forecast for 2008**

Internet access on planes, e.g. Lufthansa—train, e.g. Narita express

 Travelers flying on Lufthansa from Frankfurt, Germany to Washington, DC were among the first to try high-speed Internet access at 35,000 feet. The Boeing 747-400 jet equipped with a broadband network is esteemed to be the model for commercial airline travel in the future.




5

# Historia de la asignación de direcciones IP

| 1981 | ~ IPv4 Protocol Published |
|------|---------------------------|
| 1985 | ~ 1/16 of Total Space     |

- 1990 ~ 1/8 of Total Space
- 1995 ~ 1/3 of Total Space
- 2000 ~ 1/2 of Total Space
- 2001.5 ~ 2/3 of Total Space

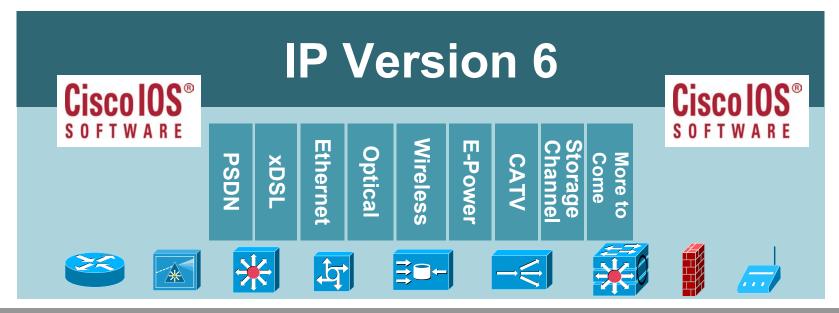


- This despite increasingly intense conservation efforts
  - PPP/DHCP address sharing CIDR (classless inter-domain routing

NAT (network address translation)

plus some address reclamation

Theoretical limit of 32-bit space: ~4 billion devices
Practical limit of 32-bit space: ~250 million devices (RFC 3194)

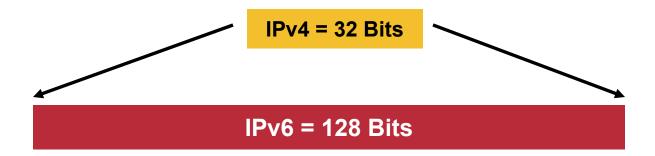

## **Porque no NAT?**

- Exhaustion of address space
- NAT breaks the end-to-end model
- Growth of NAT has slowed down growth of transparent applications
- No easy way to maintain states of NAT in case of node failures
- NAT break security
- NAT complicates mergers, double NATing is needed for devices to communicate with each other

#### IP y las nuevas aplicaciones



With Millions of New Devices Becoming IP Aware, the Need for Increased Addressing and Plug-and-Play Networking Is Only Met with the Implementation of IPv6




RST-1300 12394 04 2006

© 2006 Cisco Systems, Inc. All rights reserved.

8

# Mayor espacio de direccionamiento

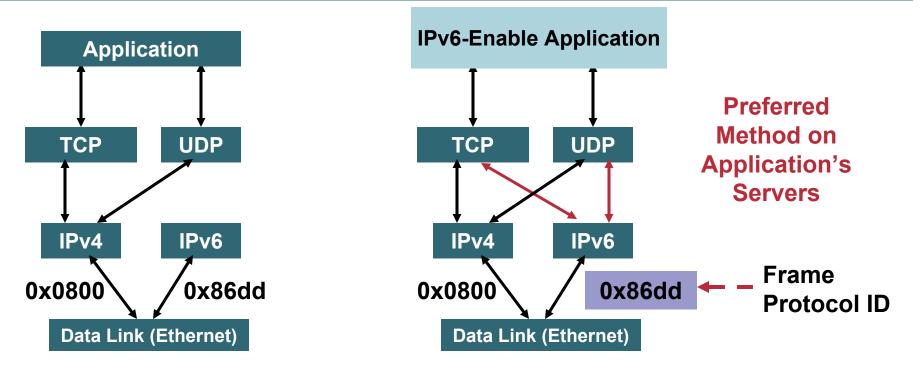


#### • IPv4

32 bits

=~ 4,200,000,000 possible addressable nodes

• IPv6


128 bits

= 340,282,366,920,938,463,463,374,607,431,768,211,456 nodes

## Transición/Coexistencia IPv4-IPv6

- A wide range of techniques have been identified and implemented, basically falling into three categories:
  - 1. Dual-stack techniques, to allow IPv4 and IPv6 to co-exist in the same devices and networks
  - 2. Tunneling techniques, to avoid order dependencies when upgrading hosts, routers, or regions
  - 3. Translation techniques, to allow IPv6-only devices to communicate with IPv4-only devices
- Expect all of these to be used, in combination

# Estrategia de Stack Dual



#### **Dual Stack Node Means:**

- Both IPv4 and IPv6 stacks enabled
- Applications can talk to both
- Choice of the IP version is based on name lookup and application preference



#### Q and A

# cisco