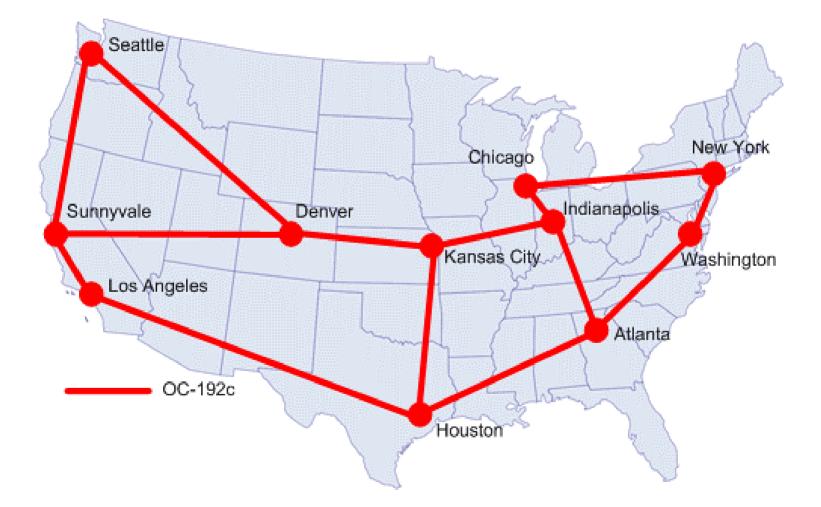
INTERNET

Designing a New Networking Environment for U.S. Research & Education

Steve Corbató corbato@internet2.edu Director, Network Initiatives, Internet2 & Visiting Fellow, Center for High Performance Computing, University of Utah

CUDI Reunión de Primavera 2005 Veracruz, Mexico 28 April 2005


Abilene Network

N E T.

- •U.S. R&E Exchange Points
- Critical role of dark fiber acquisition and State/Regional Optical Networks (S/RONs)
- National LambdaRail (NLR)
- Testbed for hybrid networking (HOPI)
- Planning for next generation network

Abilene Backbone

- Support for high-throughput (multi-Gbps) flows
 - Supporting the End-to-End Performance Initiative
 - Objective: making large flows the norm across the Internet2 infrastructure
- Security

N E T.

- Expanded efforts in security motivated by bot-nets, DDoS, viruses, etc.
- Enhancing proactive detection & response capabilities (with Abilene NOC, REN-ISAC & community)
- Provisioning dedicated capabilities (MPLS tunnles)
 - For the HOPI project
- Abilene Observatory
 - Supporting Network Research through an open measurement platform
- Providing experimental services on top of production network
 - Recent NSF awards supporting collaborating with network researchers
- IPv6
 - Roughly 2/3 of the connectors are IPv6 enabled
 - Roughly 1/2 of the peers are IPv6 enabled
 - We also do *experimental* IPv6 peerings with commercial ISPs

- Provides co-location and measurement data for the network research community
- Co-location projects

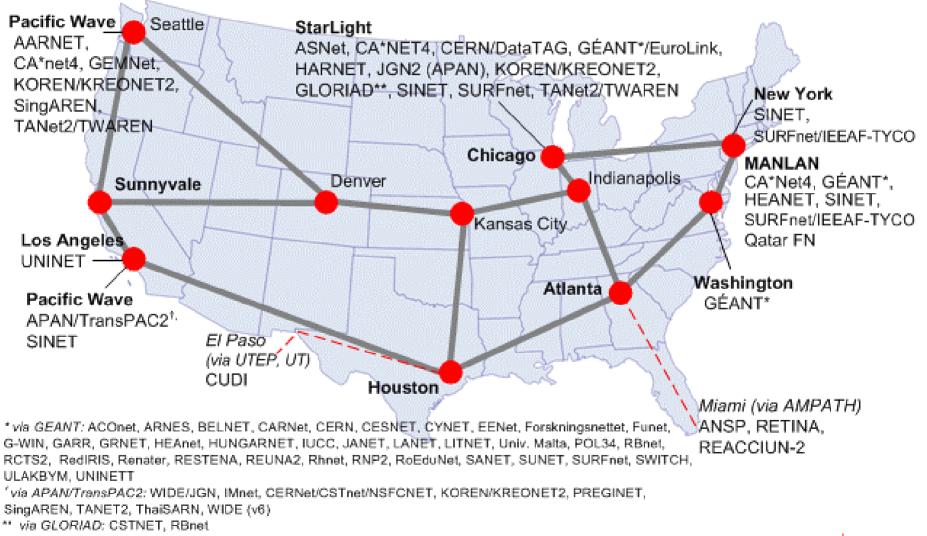
INTERNET.

- PlanetLab CS overlay network recent NSF proposal submitted to change footprint
- AMP (active measurement) project SDSC/NLANR
- PMA (passive measurement) project the Indianapolis router clamp – SDSC/NLRANR

Measurement data

- Utilization, Netflow, Throughput, Latency, Routing, Router information, Syslog
- Network access to all data netflow requires an account

U.S. International Exchange Points


 Critical peering junctions and advanced service experimental platforms for R&E nets

- Pacific Wave West Coast
 - Distributed: Seattle, Los Angeles, and soon San Francisco Bay Area
- Star Light Chicago
- MAN LAN New York City
- AMPATH Miami
- Atlantic Wave East Coast
 - Distributed: NYC, D.C., Atlanta, and Miami soon
- Increasingly co-located at major 'carrier hotels'
- Significant recognition of regional/international leadership through recent NSF IRNC awards

Abilene International Peering

Abilene International Network Peers

- Manhattan Landing in New York City partnership with NYSERNet, Indiana University, and the IEEAF
 - Provides a high performance, open exchange facility for all research and education networks
 - Located at 32 Avenue of the Americas (former AT&T Building) in lower Manhattan
- Easy interconnection to many national and international carriers and other research and education networks (Abilene, ESNet, NLR)
 - Peering model is open and bilateral

N E T.

- Cost recovery model minimal connection charges for layer 2 facility, none for experimental layer 1 connections
- Focal point for Internet2's collaboration with CANARIE, GEANT-2, and SURFnet
- Participating in Atlantic Wave initiative
 - Emerging distributed exchange point along U.S. East Coast 5/2/2005 8 (NYC↔Miami)

MAN LAN services and capabilities

- Layer 2: Ethernet switch for IPv4/v6 peering with 1 GigE and 10 GigE interfaces
- Layer 1: TDM based optical equipment (SONET/Ethernet interfaces)
 - Cisco 15454
 - Nortel OME 6500
 - Nortel HDXc
- Layer 0: equipment to be installed soon
 - Optical cross connect to facilitate rapid circuit changes

Regional Optical Networks: Underlying hypothesis

- The fundamental nature of regional networking in the U.S. is changing
 - The GigaPoP model based on provisioned, highcapacity services steadily is being replaced – on the metro and regional scales
- A model of facility-based networking built with owned assets – Regional Optical Networks (RONs) – has emerged
 - Notably, this change *increases* the importance of regional networks in the traditional *three-level hierarchy* of U.S. R&E advanced networking

Distance scales for U.S. optical networking

	Distance scale (km)	Examples	Equipment
Metro	< 60	Univ. Wash (Sea), USC/ISI(LA), MAX(DC/MD/VA)	Dark fiber & end terminals
State/ Regional	< 500	I-WIRE (IL), I-LIGHT (IN), CENIC ONI (CA), LONI (LA)	Add OO Amplifiers (or optical TDM)
Extended Regional/ National	> 500	TeraGrid 2 nd Gen Abilene, NLR	Add OEO regenerators & O&M \$'15

Leading & Emerging Regional Optical Networks

- Alabama
- Arkansas
- California (CALREN)
- Colorado (FRGP/BRAN)
- Connecticut (Conn. Education Network)
- Florida (Florida LambdaRail)
- Georgia (Southern Light Rail)
- Indiana (I-LIGHT)
- Illinois (I-WIRE)
- Louisiana (LONI)
- Maryland, D.C. & northern Virginia (MAX)
- Michigan (MiLR)
- Minnesota

- New England region (NEREN)
- New York (NYSERNet, Cornell)
- North Carolina (NC LambdaRail)
- Ohio (Third Frontier Network)
- Oklahoma (OneNet)
- Oregon
- Pacific Northwest (Lariat NIH BRIN, PNNL)
- Rhode Island (OSHEAN)
- SURA Crossroads (southeastern U.S.)
- Tennessee (OneTN)
- Texas (LEARN)
- Virginia (MATP)
- Wyoming

Dark fiber: gauging community-wide progress

INTERNET.

 Aggregate dark fiber assets acquired by U.S. R&E optical initiatives (segment-miles)

•	CENIC (for CalREN & NLR)	6,200
•	FiberCo (via Level 3 for NLR & RONs)	5,660
•	SURA (via AT&T)	6,000
	 Plus 2,000 route-miles for research 	
•	NLR Phase 2	4,000
•	OARnet	1,600
•	ORNL (via Qwest)	900
•	NEREN	670
٠	Other projects (IN,IL,MI,OR,)	2,200+

Total (conservative estimate) 27,230+

 Over 55% of these assets are now outside NLR – NLR will hold ~11,250 route-miles

- Dark fiber holding company
 - Operates on behalf of U.S. higher education and affiliates the Internet2 membership
 - Patterned on success of Quilt commodity Internet project
 - Assignment vehicle for the regionals and NLR
 - Fundamentally, a dark fiber market maker for R&E
- Project designed to support optical initiatives
 - Regional (RONs)
 - National (NLR)
- Not an operational entity
 - Does not light any of its fiber
- Concept was a spin-off from NLR governance discussions
 - Internet2 took responsibility for organizational formation
 - First acquisition of dark fiber through Level 3
 - 2,600 route miles (fiber bank) 3/2003
 - Now has assigned over 5,600 route-miles to NLR and RONs
 - Subsequent strong working relationship with WilTel
- Complementary to SURA/AT&T dark fiber donation

National LambdaRail Architecture

N L R light the future

NLR distinguishing features

- Largest higher-education owned & managed optical networking & research facility
 - Over 10,000 route-miles of underlying dark fiber
 - Four 10-Gbps λ's provisioned at outset
 One allocated to Internet2
- First & foremost, an experimental facility for research
 - Optical, switching & experimental IP capabilities (layers 1, 2 & 3)
- Use of high speed Ethernet (10 Gbps) for wide area transport
- Sparse backbone topology
 - Each participant has committed \$5M over 5 years and assumes responsibility for a regional node

5/2/2005 | 16

N L R light the future

Participating organizations

- CENIC (California)
- Pacific Northwest Gigapop
- Front Range and Intermountain Gigapops (CO, UT & WY)
- CIC (Midwest)
- Cornell (NY & New Eng)
- MATP (Virginia)
- Duke (North Carolina)
- Georgia Tech (Georgia)
- Florida LambdaRail

- Louisiana Board of Regents
- LEARN (Texas)
- Oklahoma State Board of Regents
- Pittsburgh Supercomputing Center and Univ. of Pittsburgh
- University of New Mexico
- Internet2
- Cisco Systems
- Affiliated organizations:
 - Case Western Reserve Univ.
 - SURA
 - Oak Ridge National Laboratory

Network futures

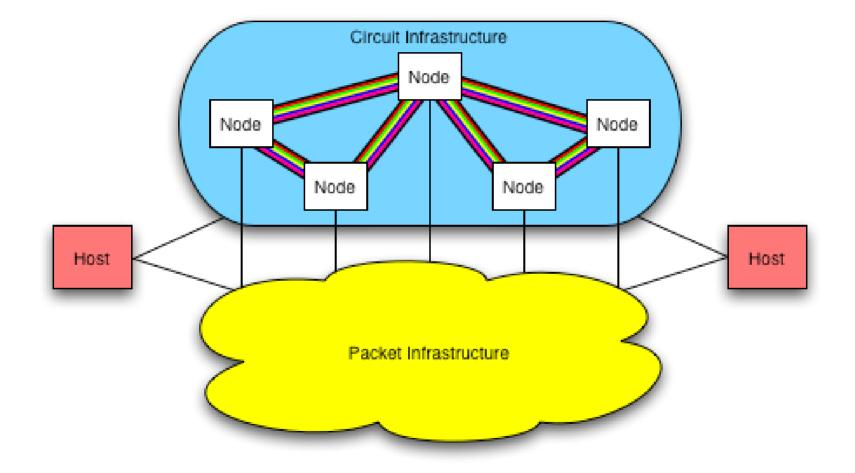
- Within the last 5 years, the U.S. research universities have become wholesale customers of telecom assets & services
 - Over 27,000 route-miles of inter-city dark fiber are held by this community
 - ~25 Regional Optical Networks (RONs) have emerged mostly state based and many with strong gubernatorial support (e.g., economic development)
- Single high-end PCs are capable of transmitting flows close to 10 Gbps over long distances
- Grid computing views the network as a schedulable resource
- Active examination of new service models (past best-effort IP as the common bearer service) ¹

INTERNET.

HOPI Project - Summary

In the near future we will see a richer set of capabilities available to network designers and end users

- Core IP packet switched networks
- A set of optically switched waves available for dynamic provisioning


Fundamental Question: How will the next generation architecture evolve?

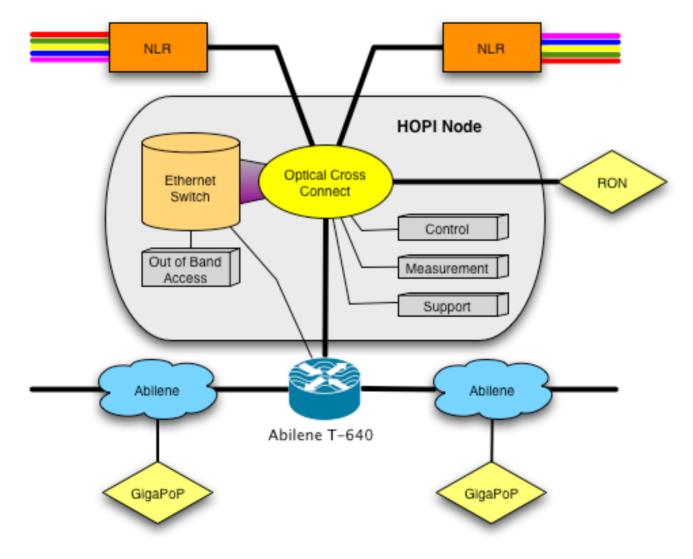
Examine a hybrid of shared IP packet switching and dynamically provisioned optical lambdas

 HOPI Project towards a Hybrid Optical and Packet Infrastructure

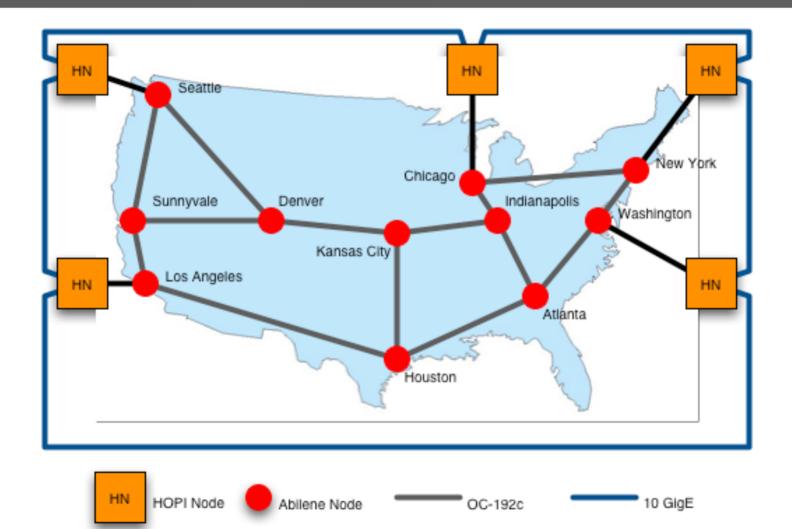
- Immediate Goals
 - Implement testbed in 2005
 - Coordinate and conduct joint experiments with similar projects in U.S. and globally
- Engaged Design and Corporate Advisory Teams

HOPI - General Problem

How would one create a hybrid from these two infrastructures?


- The nodes perform switching
- The links are point-to-point circuit-like paths.
- Each link may have attributes for example, bandwidth.
 - Attributes may determine the ability to concatenate links.
- Examples include:
 - Nodes can be λ switches with waves forming circuits attributes include colors and bandwidth, etc.
 - Nodes can be SONET switches with paths being SONET links attributes include channels, etc. For example, OC-3, OC-12, etc.
 - Nodes can be Ethernet switches with paths being point-to-point VLANS – attributes include bandwidth, etc.
 - · HOPI will use this environment to examine different architectures
 - Nodes can be routers on a packet infrastructure and the point-to-point paths are MPLS L2VPNs

HOPI - Resources


- Abilene Network
 - MPLS tunnels and the packet switched network
- Internet2's 10-Gbps λ on the NLR national footprint
- MAN LAN exchange point in New York City
 - International 10-Gbps λ 's
 - TYCO/IEEAF NYC Amsterdam/SURFnet
 - NYC-London/GEANT2 (soon)
 - Layer 1 and 2 switching
- Collaborations with U.S. Regional Optical Networks (RONs) and other related efforts
 - E.g., GLIF, UltraLight, DRAGON

- October 2007 End of recent 1-year
 Abilene transport MoU extension
 - Sets 3rd-generation network planning timeline
 - Architecture definition: end 4Q05
 - Transport selection: end 1Q06

N E T.

- Router and other equipment selection: end 2Q06
- Backbone deployed: end 4Q06
- Connector transition (if necessary): starting 1Q07
- Concurrently, review overall business plan and management model
- Network design time frame: 2007-2012

Next Generation Network Design

Critical factors

- RON and International integration
- Advanced service support
 - (Multicast, v6), High Performance Throughput, Measurement
- Enhanced network research facilitation
- Network and end-user security
- Options for increased reliability

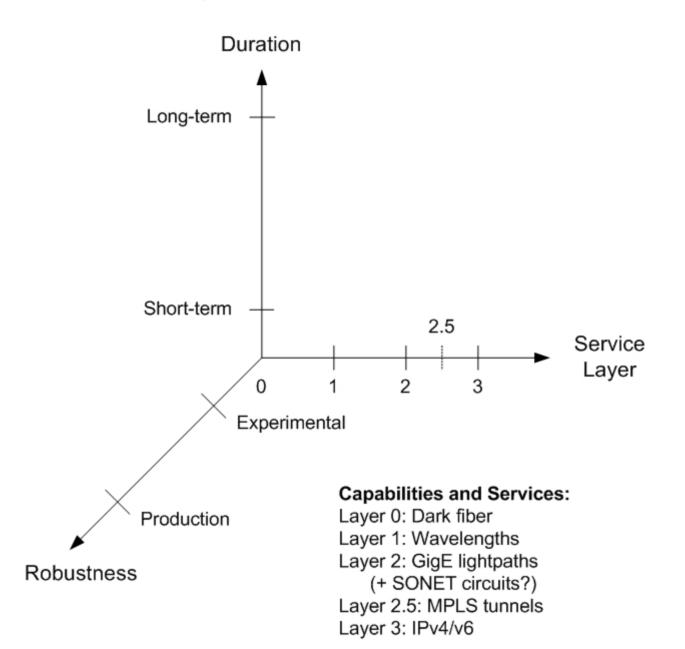
Process

- Hybrid architecture evaluation (HOPI)
 - IP core using 40?/10 Gbps transport
 - Dedicated capabilities (λ 's, MPLS tunnels)
- Evaluation of optical transport capabilities
 - NLR, commercial providers & RONs
- Design & planning collaboration
 - U.S. & int'l partners (ESNet, TeraGrid, SURFnet, GEANT 22005 | 27

Evolving optical transport requirements

Core wavelengths

INTERNET.


- 10 and hopefully 40 Gbps
- Optimized availability
- Applications: IP network backbone and backhaul, weather forecasting grids, radiological image transfer
- To date, this service model has been the carrier model

 Internet2 has significant interest in the potential hardening of
 NLR operational and maintenance models

Flexible wavelengths

- 10 and possibly 2.5 Gbps
- Less stringent reliability requirements
- Lower cost is critical objective
- Potentially short duration (rapid provisioning and tear-down)
- Applications: Grid clusters, IP network overflow, network research projects, highly redundant IP networks
- By design, NLR is a natural source of this class of λ 's

Potential Model for Services and Capabilities to be Offered in Next Generation Higher Education Network Infrastructure

Potential spectrum of services and capabilities

- Dark fiber, wireless spectrum
- Wavelengths

INTERNET.

- Subchannels
 - Gigabit Ethernet 'circuits'
 - -SONET circuits
 - -MPLS tunnels
- IPv4/v6
- Overlay network support

Need for new model of customer support and end-to-end connectivity delivery assurance

- Working across campus, regional & national scales
- Effective campus penetration of new services is a critical issue

30

Conclusions

- Abilene Network remains a viable packet infrastructure – supporting network research (Observatory) and architectural innovation (HOPI)
- Regional Optical Networks are transforming U.S. networking
- A national optical facility, NLR, is already partially operational – completion scheduled for later this year
- Projects such as HOPI are exploring the potential approaches to hybrid networking
- A third-generation U.S. higher education network architecture is being defined this year
- Additional details in tomorrow's talk (Redes de la Nueva Generación, 11 a.m.)

INTERNET®

www.internet2.edu